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EVALUATION OF NEUTRON CROSS-SECTIONS FOR LIQUID
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Abstract: Cross-sections for slow neutron scattering from H, and D, have been calculated taking
into account the liquid state. The ability of the model is demonstrated by comparison with expe-
rimental results for differential and total cross-sections. For applications the scattering law S(«, 3)
has been prepared in the ENDF-5-format for different temperatures as a basis for the generation of
scattering matrices. From calculations of neutron spectra with different scattering models it turns
out that the gain factor for cold neutrons is sensitiv to the liquid state. Below 1 meV the frequently
used Young-Koppel mnodel for a molecular H,-gas overestimates the gain factor by about 50 %.

(cold neutrons, liquid hydrogen, liquid deuterium, intermolecular interference, double differential
cross-sections, total cross-sections, gain factors)

Scope of the Work

Liquid hydrogen and deuterium are favoured as
moderator materials for cold neutron sources in research
reactors. To improve design and optimization calcula-
tions, realistic scattering models should be applied for
neutron-thermalization and -transport in liguid hydrogen
and deuterinm.

The well-known scattering kernel by Young and
Koppel for Hy- and D;-gas [1] takes into account the
spin-dependence of the neutron-proton (deuteron) inter-
actions, free rotations of the molecules, harmonic H-H
(D-D) vibrations and free translations of the molecular
units:
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For an adequate description of the liquid state the
scattering function for free translations in (3) has to be
substituted in general by a scattering function for the su-
perposition of several translational modes:

1:  harmonic lattice vibration
2:  diffusive motions
3:  hindered translations (with effective mass)
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The corresponding scattering law for translations
of the molecules in the liquid state we can derive
from the scattering function (4) by a numerical Fourier-
transformation with the code GASKET |[2]:
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Scattering Kernel for Liquid Hydrogen

By combining the molecular dynamics with the
translational one, we can set up the scattering kernel for
the molecular liquid. One way to derive the ”self”-term
of the double differential cross-section for the liquid state
is the numerical convolution of the respective scattering
laws [3]
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An equivalent direct evaluation takes into account
the effect of typical translational modes (i = 1, 2, 3) for
the liquid state already in the multiple summatious of
the Young-Koppel kernel over the possible initial and fi-
nal states of the system, compatible with conservation
of energy and momentum. Splitting the scattering cross-
section into coherent and incoherent contributions, we ob-
tain [4] in extension of the Young-Koppel model

for parahydrogen
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with the modified partial scattering laws
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The matrix elements A, and the Clebsch-
Gordan coeflicients (/(JJ'l;00) can be taken from [1].
Srans (K, €ngyr) is determined by (5).

In the same way we get
for orthodeuterium
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and for paradeuterium
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with Sevenoda(k, €) according to (12).
To include intermolecular interference we use the ap-

proach by Vineyard [5], with the final result
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where S(x) is the static structure factor.

(18)

Comparison between Theory and Experiment

For translational modes of type i = 1,3 differen-
tial and total cross-sections for liquid hydrogen have been
calculated [3] and compared with experiments. The fre-
quency spectrum for harmonic lattice vibrations was cho-
sen in accordance with data derived from experimental
and theoretical investigations [6], [7], see Fig. 1. The
comparison of calculated double differential cross-sections
with measured data in Fig. 2 and Fig. 3 shows that our
model for liquid hydrogen is able to represent the char-
acteristic features in better agreement with the experi-
mental results than the Young-Koppel kernel. The same
conclusion can be drawn from comparisons of calculated
and measured total cross-sections. Fig. 4 shows for ex-
ample the total cross-section of parahydrogen. The lig-
uid kernel reproduces the characteristic decrease between
50 and 10 meV much better than the gas kernel. The
same tendency has been observed for a liquid keruel with
translational modes i = 1,2, where the intermolecular vi-
brations are described by a single frequency parameter
(8].
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The second characteristic decrease below 5 meV is
due to the intermolecular interference and can be repre-
sented according to (18). Our static structure factor (see
Fig. 5) has been approximated for low x-values by a solu-
tion of the Percus-Yevick equation for liard spheres [12],
and for higher x-values by a Fourier-Transformation of the
low density pair distribution function with the Lenard-
Jones Potential for the interaction of the molecules.

Fig. 6 shows our calculated total neutron cross-
section for liquid deuterium and results from Utsuro [9)]
compared with experimental data. Apparantly for deu-
terium the agreement between theory and experiment is
not as good as in the case of hydrogen.

Scattering Law Representation

As a data basis for nuclear engineering applications
the scattering law for proton and deuteron in liquid hy-
drogen and deuterium,

S(e, B) = €% S(x, €) (19)
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has been generated in the ENDF-5 format for a fine
(o, B3)-grid and different temperatures. Since the prin-
ciple of detailed balance is violated as a consequence of
the spin dependence of the nuclear reaction, the scattering
law data in ENDF-5 format are to be extended to negative
3-values. This implies that the cross-section generation‘
code NJOY [10], which carries out integrations over a and
B to produce group cross-sections from the scattering law
S{a, B3), has to be modified [11].

Neutron Spectra

With scattering matrices generated from different
scattering kernels for hydrogen, we have solved the neu-
tron transport equation in By-approximation for the con-
ditions of a cold neutron source, see Fig. 7. The inter-
molecular interaction in the liquid state contributes to the
reduction of the slowing down power in addition to the
effect of the chemical binding in the hydrogen molecule.
Therefore, realistic neutron spectra calculated with the
scattering kernel for liquid liydrogen are hardened rela-
tiv to spectra calculated with the Young-Koppel kernel.
This means, that the number of cold neutrons predicted
by the Young-Koppel kernel is too high. The gain fac-
tors for cold neutrons in liquid hydrogen at 20 K (related
to water at room temperature) are overestimated by the
Young-Koppel model in the energy range below 1 meV hy
about 50 %.
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Fig. 2: Double differential neutron scattering cross-section for normal hydrogen (n — Hy)at T =18 K
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Fig. 3: Double differential neutron scattering cross-section for hydrogen (52 %
at T = 19.8 K
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Fig. 4: Total neutron cross-sections for parahydrogen at T = 14 K
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Fig. 6: Total neutron cross-sections for deuterium at T = 19 K
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Fig. 7:
Neutron flux spectra in a liquid hydrogen (n - H,) cold neutron source at T = 20 K





